Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 42(2): 25, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619632

RESUMO

Oxygen (O2) supplementation is commonly used to treat hypoxia in patients with respiratory failure. However, indiscriminate use can lead to hyperoxia, a condition detrimental to living tissues, particularly the brain. The brain is sensitive to reactive oxygen species (ROS) and inflammation caused by high concentrations of O2, which can result in brain damage and mitochondrial dysfunction, common features of neurodegenerative disorders. Hyperoxia leads to increased production of ROS, causing oxidative stress, an imbalance between oxidants and antioxidants, which can damage tissues. The brain is particularly vulnerable to oxidative stress due to its lipid composition, high O2 consumption rate, and low levels of antioxidant enzymes. Moreover, hyperoxia can cause vasoconstriction and decreased O2 supply to the brain, posing a challenge to redox balance and neurodegenerative processes. Studies have shown that the severity of hyperoxia-induced brain damage varies with inspired O2 concentration and duration of exposure. Therefore, careful evaluation of the balance between benefits and risks of O2 supplementation, especially in clinical settings, is crucial.


Assuntos
Lesões Encefálicas , Hiperóxia , Humanos , Espécies Reativas de Oxigênio , Encéfalo , Oxigênio , Antioxidantes
2.
Inhal Toxicol ; 36(3): 174-188, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449063

RESUMO

BACKGROUND: Oxygen therapy is an alternative for many patients with hypoxemia. However, this practice can be dangerous as oxygen is closely associated with the development of oxidative stress. METHODS: Male Wistar rats were exposed to hyperoxia with a 40% fraction of inspired oxygen (FIO2) and hyperoxia (FIO2 = 60%) for 120 min. Blood and lung tissue samples were collected for gas, oxidative stress, and inflammatory analyses. RESULTS: Hyperoxia (FIO2 = 60%) increased PaCO2 and PaO2, decreased blood pH and caused thrombocytopenia and lymphocytosis. In lung tissue, neutrophil infiltration, nitric oxide concentration, carbonyl protein formation and the activity of complexes I and II of the mitochondrial respiratory chain increased. FIO2 = 60% decreased SOD activity and caused several histologic changes. CONCLUSION: In conclusion, we have experimentally demonstrated that short-term exposure to high FIO2 can cause oxidative stress in the lung.


Assuntos
Hiperóxia , Humanos , Ratos , Animais , Masculino , Hiperóxia/complicações , Hiperóxia/metabolismo , Transporte de Elétrons , Ratos Wistar , Pulmão/metabolismo , Oxigênio , Estresse Oxidativo
3.
Metab Brain Dis ; 39(4): 635-648, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429463

RESUMO

Obesity results from an energy imbalance and has been considered an epidemic due to its increasing rates worldwide. It is classified as a low-grade chronic inflammatory disease and has associated comorbidities. Different nutritional strategies are used for the purpose of weight loss, highlighting low-carbohydrate (LC) diets, ketogenic diets, and intermittent fasting (IF). These strategies can lead to metabolic and behavioral changes as they stimulate different biochemical pathways. Therefore, this study evaluated memory, energy metabolism, neuroinflammation, oxidative stress, and antioxidant defense parameters in mice subjected to an LC diet, ketogenic diet (KD), or IF. Eighty male Swiss mice, 60 days old, were divided into 4 groups: control, LC, KD, or IF. Body weight was measured weekly, and food intake every 48 h. After 15 days of nutritional interventions, the animals were subjected to the behavioral object recognition test and subsequently euthanized. Then, visceral fat was removed and weighed, and the brain was isolated for inflammatory and biochemical analysis. We concluded from this study that the LC and KD strategies could damage memory, IF improves the production of adenosine triphosphate (ATP), and the LC, KD, and IF strategies do not lead to neuroinflammatory damage but present damage at the level of oxidative stress.


Assuntos
Dieta Cetogênica , Estresse Oxidativo , Animais , Masculino , Camundongos , Estresse Oxidativo/fisiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/etiologia , Doenças Neuroinflamatórias/metabolismo , Dieta com Restrição de Carboidratos , Jejum/metabolismo , Metabolismo Energético/fisiologia , Encéfalo/metabolismo
4.
Inflammation ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236386

RESUMO

Chronic hyperglycemia caused by diabetes mellitus (DM) slows down the healing process due to prolonged inflammation which impedes the regeneration progression. Photobiomodulation (PBM) is considered a non-pharmacological intervention and has anti-inflammatory and biostimulatory effects that accelerate the healing process. Currently found IL-1ß inhibitors are difficult to implement due to their cytotoxic potential, excessive amounts, and invasive administration, and therefore, the application of this peptide in diabetic wounds represents a promising intervention to help resolve the inflammatory response. This study aimed to investigate the effect of an IL-1ß inhibitor molecule associated with PBM irradiation in a model of epithelial injury in diabetic mice. After the induction of the DM model with streptozotocin (STZ), the skin lesion model was implemented through surgical excision. Sixty C57BL/6 mice divided into five experimental groups (n = 12) were used: excisional wound (EW), DM + EW, DM + EW + DAP 1-2 (inhibitor peptide), DM + EW + PBM, and DM + EW + PBM + DAP 1-2. Treatment started 12 h after wound induction and was performed daily for 5 days. Twenty-four hours after the last application, the animals were euthanized and the outer edge of the wound was removed. The results obtained demonstrate that the DM + EW + PBM + DAP 1-2 group caused a reduction in the levels of pro-inflammatory cytokines, an increase in anti-inflammatory cytokines, and an increase in TGF-ß and maintenance of the cellular redox state with a consequent reduction in levels of inflammatory infiltrate and concomitant stimulation of type III collagen gene expression, as well as a decrease in the size of the wound in square centimeter 6 days after the injury. Only the combination of therapies was able to favor the process of tissue regeneration due to the development of an approach capable of acting at different stages of the regenerative process, through the mechanisms of action of interventions on the inflammatory process by avoiding its stagnation and stimulating progression of regeneration.

5.
Mol Neurobiol ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296901

RESUMO

Obesity causes inflammation in the adipose tissue and can affect the central nervous system, leading to oxidative stress and mitochondrial dysfunction. Therefore, it becomes necessary to seek new therapeutic alternatives. Gold nanoparticles (GNPs) could take carnitine to the adipose tissue, thus increasing fatty acid oxidation, reducing inflammation, and, consequently, restoring brain homeostasis. The objective of this study was to investigate the effects of GNPs associated with carnitine on the neurochemical parameters of obesity-induced mice. Eighty male Swiss mice that received a normal lipid diet (control group) or a high-fat diet (obese group) for 10 weeks were used. At the end of the sixth week, the groups were divided for daily treatment with saline, GNPs (70 µg/kg), carnitine (500 mg/kg), or GNPs associated with carnitine, respectively. Body weight was monitored weekly. At the end of the tenth week, the animals were euthanized and the mesenteric fat removed and weighed; the brain structures were separated for biochemical analysis. It was found that obesity caused oxidative damage and mitochondrial dysfunction in brain structures. Treatment with GNPs isolated reduced oxidative stress in the hippocampus. Carnitine isolated decreased the accumulation of mesenteric fat and oxidative stress in the hippocampus. The combination of treatments reduced the accumulation of mesenteric fat and mitochondrial dysfunction in the striatum. Therefore, these treatments in isolation, become a promising option for the treatment of obesity.

6.
Neurochem Res ; 48(11): 3316-3326, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37495838

RESUMO

Excessive consumption of nutrients, as well as obesity, leads to an inflammatory process, especially in adipose tissue. This inflammation reaches the systemic level and, subsequently, the central nervous system (CNS), which can lead to oxidative stress and mitochondrial dysfunction, resulting in brain damage. Thus, adequate treatment for obesity is necessary, including lifestyle changes (diet adequation and physical activity) and pharmacotherapy. However, these drugs can adversely affect the individual's health. In this sense, searching for new therapeutic alternatives for reestablishing metabolic homeostasis is necessary. L-carnitine (LC) and acetyl-L-carnitine (LAC) have neuroprotective effects against oxidative stress and mitochondrial dysfunction in several conditions, including obesity. Therefore, this study aimed to conduct a narrative review of the literature on the effect of LC and LAC on brain damage caused by obesity, in particular, on mitochondrial dysfunction and oxidative stress. Overall, these findings highlight that LC and LAC may be a promising treatment for recovering REDOX status and mitochondrial dysfunction in the CNS in obesity. Future work should focus on better elucidating the molecular mechanisms behind this treatment.


Assuntos
Acetilcarnitina , Carnitina , Humanos , Acetilcarnitina/uso terapêutico , Acetilcarnitina/farmacologia , Carnitina/uso terapêutico , Carnitina/farmacologia , Sistema Nervoso Central , Estresse Oxidativo , Obesidade/tratamento farmacológico
7.
Biochem Cell Biol ; 101(4): 313-325, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36947832

RESUMO

Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.


Assuntos
Frutose , Obesidade , Camundongos , Masculino , Animais , Frutose/efeitos adversos , Estresse Oxidativo , Inflamação , Encéfalo
8.
Neurochem Int ; 163: 105468, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587746

RESUMO

The aim of this review was to investigate in the literature the application of strategies such as low carbohydrate diet (LCD), ketogenic diet (KD) and intermittent fasting (IF) and their effects on the CNS. We performed a narrative review of the literature. The search was specifically carried out in PubMed, selecting articles in English, which had the following keywords: obesity, central nervous system, low carb diet, ketogenic diet and intermittent fasting, using the narrative review methodology. The studies found show that the benefits of the LCD, KD and IF strategies, at the CNS level, have a strong influence on the mechanisms of hunger and satiety, as well as on the reduction of food reward and show improvement in memory and mood influenced by the interventions.


Assuntos
Dieta Cetogênica , Fenômenos Fisiológicos do Sistema Nervoso , Humanos , Obesidade/tratamento farmacológico , Dieta com Restrição de Carboidratos , Dieta Cetogênica/métodos , Encéfalo
9.
J Drug Target ; 31(2): 134-141, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36066550

RESUMO

Introduction: Obesity is considered a chronic non-communicable disease characterised by excess body fat. In recent years the prevalence of obesity has grown a lot. Individuals with obesity store the excess of nutrients consumed in the form of fat in adipose tissue, and generate an imbalance of this tissue, where there is the secretion of adipocytokines, which contributes to a peripheral and central inflammatory picture, reaching the central nervous system (CNS), generating neuroinflammation. There is still no effective and safe therapy for the treatment of obesity, many of the drugs marketed has serious side effects. Therefore, there is a search for therapies aimed mainly at reducing inflammation.Objective: In this work the possibility of using a new therapeutic option for obesity will be explored, using nanotechnology. Nanotechnology has gained prominence in recent years for being a promising technology for treatment and as a molecule-in-the-light in inflammatory diseases. Gold nanoparticles (GNP) stand out among nanomaterials because they demonstrate anti-inflammatory characteristics by various pathways, and have been widely used in the treatment of inflammatory diseases, including in the CNS, demonstrating excellent results.Result: Thus, the use of GNP for the treatment of obesity is promising due to the inflammatory state of obesity, thus acting as anti-inflammatory at the peripheral and central levels.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Ouro/uso terapêutico , Doenças Neuroinflamatórias , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
Respir Physiol Neurobiol ; 306: 103963, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36041716

RESUMO

Oxygen (O2) therapy is used as a therapeutic protocol to prevent or treat hypoxia. However, a high inspired fraction of O2 (FIO2) promotes hyperoxia, a harmful condition for the central nervous system (CNS). The present study evaluated parameters of oxidative stress and mitochondrial dysfunction in the brain of rats exposed to different FIO2. Male Wistar rats were exposed to hyperoxia (FIO2 40 % and 60 %) compared to the control group (FIO2 21 %) for 2 h. Oxidative stress, neutrophilic infiltration, and mitochondrial respiratory chain enzymes were determined in the hippocampus, striatum, cerebellum, cortex, and prefrontal cortex after O2 exposure. The animals exposed to hyperoxia showed increased lipid peroxidation, formation of carbonyl proteins, N/N concentration, and neutrophilic infiltration in some brain regions, like hippocampus, striatum, and cerebellum being the most affected. Furthermore, CAT activity and activity of mitochondrial enzyme complexes were also altered after exposure to hyperoxia. Rats exposed to hyperoxia showed increase in oxidative stress parameters and mitochondrial dysfunction in brain structures.


Assuntos
Hiperóxia , Animais , Encéfalo/metabolismo , Hiperóxia/metabolismo , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Ratos , Ratos Wistar
11.
Behav Brain Res ; 434: 114019, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35872330

RESUMO

Obesity is associated with low-grade chronic inflammation and oxidative stress, affecting the brain's reward system by decreasing dopaminergic neurotransmission. It is known that dopaminergic neurotransmission is also reduced in Parkinson's disease (PD), and high adiposity is considered a risk factor for the development of several neurodegenerative diseases, including PD. This study aimed to assess the effects of obesity on neuroinflammatory and neurochemical parameters in an animal model of reserpine-induced PD. The obese group showed increased inflammation and oxidative damage as well as inhibition of mitochondrial respiratory chain complexes I and II and DNA damage in the evaluated structures. The PD group did not show inflammation or mitochondrial dysfunction but exhibited oxidative damage in the hippocampus. The combination group (obesity + PD) showed reduced inflammation and oxidative stress and increased activity of complexes I and II of the mitochondrial respiratory chain in most of the analyzed structures. On the other hand, obesity + PD caused oxidative damage to proteins in the liver, prefrontal cortex, striatum, and cerebral cortex and oxidative stress in the hypothalamus, resulting in reduced catalase activity. Furthermore, the combination group showed DNA damage in blood, liver, and cerebral cortex. In conclusion, it was observed that the association of obesity and PD did not increase inflammation, oxidative stress, or mitochondrial dysfunction in most of the evaluated structures but increased oxidative damage and induced mechanisms that led to DNA damage in peripheral tissues and brain structures.


Assuntos
Doença de Parkinson , Animais , Modelos Animais de Doenças , Inflamação , Obesidade , Estresse Oxidativo , Reserpina
12.
Inflammation ; 45(6): 2352-2367, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35689164

RESUMO

Sepsis is a life-threatening organ dysfunction, which demands notable attention for its treatment, especially in view of the involvement of immunodepressed patients, as the case of patients with diabetes mellitus (DM), who constitute a population susceptible to develop infections. Thus, considering this endocrine pathology as an implicatory role on the immune system, the aim of this study was to show the relationship between this disease and sepsis on neuroinflammatory and neurochemical parameters. Levels of IL-6, IL-10, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and mitochondrial respiratory chain complexes were evaluated in the hippocampus and prefrontal cortex 24 h after sepsis by cecal ligation and perforation (CLP) in Wistar rats induced to type 1 diabetes by alloxan (150 mg/kg). It was verified that diabetes implied immune function after 24 h of sepsis, since it contributed to the increase of the inflammatory process with higher production of IL-6 and decreased levels of IL-10 only in the hippocampus. In the same brain area, a several decrease in NGF level and activity of complexes I and II of the mitochondrial respiratory chain were observed. Thus, diabetes exacerbates neuroinflammation and results in mitochondrial impairment and downregulation of NGF level in the hippocampus after sepsis.


Assuntos
Diabetes Mellitus , Sepse , Animais , Ratos , Ratos Wistar , Fator de Crescimento Neural/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Encéfalo/metabolismo , Sepse/metabolismo , Mitocôndrias/metabolismo , Modelos Animais de Doenças
13.
Int J Dev Neurosci ; 82(5): 375-384, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35595536

RESUMO

Obesity is currently one of the most serious health problems, affecting 13% of the world's adult population. Obesity is characterized by persistent low-grade chronic inflammation that assumes systemic proportions and triggers several associated metabolic diseases. Furthermore, obesity has been associated with an increased occurrence of central disorders such as impaired cognitive function, reward system dysfunction, and depression. In summary, there is a quantitative reduction in the release of neurotransmitters in depression. Postsynaptic cells capture lower concentrations of neurotransmitters, which leads to a functional reduction in the central nervous system (CNS). Globally, approximately 15-65% of women experience depressive symptoms during pregnancy, depending on their location. Depressive symptoms persist in some women, leading to postpartum depression (PPD). Thus, obesity may be considered a risk factor for PPD development. This study aimed to synthesize studies on the impact of obesity-related neuroinflammation and PPD. We conducted a narrative review of the relevant literature. The search was performed in electronic databases, specifically PubMed, selecting articles in English published from 2014 to 2021 using the narrative review methodology.


Assuntos
Depressão Pós-Parto , Adulto , Depressão , Depressão Pós-Parto/complicações , Depressão Pós-Parto/epidemiologia , Depressão Pós-Parto/psicologia , Feminino , Humanos , Doenças Neuroinflamatórias , Obesidade/complicações , Gravidez , Fatores de Risco
14.
Neurochem Res ; 47(7): 1888-1903, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35426598

RESUMO

This study aimed to evaluate the effect of Cynara cardunculus leaf ethanol extract on inflammatory and oxidative stress parameters in the hypothalamus, prefrontal cortex, hippocampus, striatum, cerebral cortex and liver of high-fat diet-induced obese mice. Food intake, body weight, visceral fat weight, and liver weight were also evaluated. Male Swiss mice were divided into control (low-fat purified diet) and obese (high-fat purified diet) groups. After 6 weeks, mice were divided into control + saline, control + C. cardunculus leaf ethanol extract, obese + saline, obese + C. cardunculus leaf ethanol extract. Cynara cardunculus leaf ethanol extract (1600 mg/kg/day) or saline was administered orally for 4 weeks. Brain structures (hypothalamus, hippocampus, prefrontal cortex, striatum and cerebral cortex) and liver were removed. Treatment with C. cardunculus leaf ethanol extract did not affect body weight but did reduce visceral fat. Obesity can cause inflammation and oxidative stress and increase the activity of antioxidant enzymes in brain structures. Treatment with ethanolic extract of C. cardunculus leaves partially reversed the changes in inflammatory damage parameters and oxidative damage parameters and attenuated changes in the antioxidant defense. The C. cardunculus leaf ethanol extract benefited from the brains of obese animals by partially reversing the changes caused by the consumption of a high-fat diet and the consequent obesity. These results corroborate those of studies indicating that the C. cardunculus leaf ethanol extract can contribute to the treatment of obesity.


Assuntos
Cynara scolymus , Cynara , Animais , Antioxidantes/farmacologia , Cynara/química , Cynara scolymus/química , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Etanol/efeitos adversos , Masculino , Camundongos , Obesidade/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta/química
15.
Cannabis Cannabinoid Res ; 7(2): 135-151, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34242511

RESUMO

Introduction: Obesity is defined as an excess of accumulation of fat that can be harmful to health. Storage of excess fat in the adipose tissue triggers an inflammatory process, which makes obesity a low-grade chronic inflammatory disease. Obesity is considered a complex and multifactorial disease; hence, no intervention strategy appears to be an ideal treatment for all individuals. Therefore, new therapeutic alternatives are often studied for the treatment of this disease. Currently, herbal medicines are gaining ground in the treatment of obesity and its comorbidities. In this context, much attention is being paid to Cannabis sativa derivatives, and their therapeutic functions are being widely studied, including in treating obesity. Objective: Highlight the pharmacological properties of Δ9-tetrahydrocannabivarin (THCV), Δ9-tetrahydrocannabidinol (THC), and cannabidiol (CBD), the predominant isolated components of Cannabis sativa, as well as its therapeutic potential in the treatment of obesity. Methods: This is a narrative review that shows the existing scientific evidence on the clinical application of Cannabis sativa as a possible treatment for obesity. Data collection was performed in the PubMed electronic database. The following word combinations were used: Cannabis and obesity, Cannabis sativa and obesity, THCV and obesity, THC and obesity, CBD and obesity, and Cannabis sativa and inflammation. Results: Evidence shows that Cannabis sativa derivatives have therapeutic potential due to their anti-inflammatory properties. In addition, people who use cannabis have a lower body mass index than those who do not, making the plant an option to reduce and reverse inflammation and comorbidities in obesity. Conclusion: It is concluded that phytocannabinoids derived from Cannabis sativa have therapeutic potential due to its anti-inflammatory, antioxidant, and neuroprotective properties, making the plant a study option to reduce and reverse inflammation and comorbidities associated with obesity.


Assuntos
Canabidiol , Canabinoides , Cannabis , Analgésicos , Anti-Inflamatórios/farmacologia , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides , Canabinoides/farmacologia , Dronabinol/farmacologia , Humanos , Inflamação/tratamento farmacológico , Obesidade/tratamento farmacológico
16.
World J Clin Cases ; 9(20): 5358-5371, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34307590

RESUMO

At the end of 2019, a new disease with pandemic potential appeared in China. It was a novel coronavirus called coronavirus disease 2019 (COVID-19). Later, in the first quarter of 2020, the World Health Organization declared the outbreak of this disease a pandemic. Elderly people, people with comorbidities, and health care professionals are more vulnerable to COVID-19. Obesity has been growing exponentially worldwide, affecting several age groups. It is a morbidity that is associated with genetic, epigenetic, environment factors and/or interaction between them. Obesity is associated with the development of several diseases including diabetes mellitus, mainly type 2. Diabetes affects a significant portion of the global population. Obesity and diabetes are among the main risk factors for the development of severe symptoms of COVID-19, and individuals with these conditions constitute a risk group. Based on a literature review on obesity in people with diabetes in the framework of the COVID-19 pandemic, this study presents updated important considerations and care to be taken with this population.

17.
Mater Sci Eng C Mater Biol Appl ; 120: 111392, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33545808

RESUMO

In this study, we performed two experiments. In the first experiment, the objective was to link gold nanoparticles (GNPs) with sodium diclofenac and/or soy lecithin and to determine their concentration in tissues and their toxicity using hepatic and renal analyzes in mice to evaluate their safety as therapeutic agents in the subsequent treatment of obesity. In the second experiment, we evaluated the effect of GNPs on inflammatory and biochemical parameters in obese mice. In the first experiment, we synthesized and characterized 18 nm GNPs that were administered intraperitoneally in isolation or in association with sodium diclofenac and/or soy lecithin in mice once daily for 1 or 14 days. Twenty-four hours after the single or final administration, the animals were euthanized, following which the tissues were removed for evaluating the concentration of GNPs, and serum samples were collected for hepatic and renal analysis. Hepatic damage was evaluated based on the levels of alanine aminotransferase (ALT), whereas renal damage was evaluated based on creatinine levels. A higher concentration of GNPs was detected in the tissues upon administration for 14 days, and there were no signs of hepatic or renal damage. In the second experiment, the mice were used as animal models of obesity and were fed a high-fat diet (obese group) and control diet (control group). After eight weeks of high-fat diet administration, the mice were treated with saline or with GNPs (average size of 18 nm) at a concentration of 70 mg/L (70 mg/kg) once a day, for 14 days, for 10 weeks. Body weight and food intake were measured frequently. After the experiment ended, the animals were euthanized, serum samples were collected for glucose and lipid profile analysis, the mesenteric fat content was weighed, and the brains were removed for inflammatory and biochemical analysis. In obese mice, although GNP administration did not reduce body and mesenteric fat weight, it reduced food intake. The glucose levels were reversed upon administration of GNPs, whereas the lipid profile was not altered in any of the groups. GNPs exerted a beneficial effect on inflammation and oxidative stress parameters, without reverting mitochondrial dysfunction. Our results indicate that the intraperitoneal administration of GNPs for 14 days results in a significant GNP concentration in adipose tissues, which could be an interesting finding for the treatment of inflammation associated with obesity. Based on the efficacy of GNPs in reducing dietary intake, inflammation, and oxidative stress, they can be considered potential alternative agents for the treatment of obesity.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Encéfalo , Ouro/metabolismo , Fígado/metabolismo , Nanopartículas Metálicas/toxicidade , Camundongos , Obesidade/tratamento farmacológico , Estresse Oxidativo
18.
Nutr Res ; 86: 60-67, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33551256

RESUMO

The dramatic increase of people affected by obesity worldwide seems to be influenced by external factors independent of eating habits, physical exercise, or genetic characteristics. There may be a number of such factors, but one hypothesis is that there is person-to-person transmission, causing an epidemic effect, as occurs with infectious diseases. In animal models, experimental infection with human adenovirus-36 (Adv36) causes obesity. Humans cannot be experimentally infected, but a number of studies found a correlation of positive serology for Adv36 with overweight/obesity in humans. In vitro studies have shown that Adv36 accelerates the differentiation and proliferation of preadipocytes into adipocytes and increases their lipid concentration. Another viral mechanism involved is the activation of a noninsulin-dependent process that increases glucose uptake, mainly in adipose tissue and muscle. The increased glucose, coupled with increased lipogenesis due to increased fatty acid synthase and the action of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in stimulating adipocyte differentiation from adult stem cells enhances fat accumulation within the adipocytes. In studies conducted to date, the Adv36 E4 open reading frame 1 gene (E4orf1), which activates the glucose transporter protein isoform 4 (GLUT4) and glucose transporter protein isoform 1 (GLUT1) glucose transporters, appears to play a major role in the virus adipogenesis. The aim of this study was to review the pathophysiology of obesity and the role of Adv36.


Assuntos
Infecções por Adenovirus Humanos/fisiopatologia , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/fisiologia , Obesidade/fisiopatologia , Obesidade/virologia , Infecções por Adenovirus Humanos/complicações , Infecções por Adenovirus Humanos/etiologia , Adipócitos/fisiologia , Adipogenia , Tecido Adiposo/metabolismo , Animais , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Metabolismo dos Lipídeos , PPAR gama/metabolismo
19.
Neurotox Res ; 39(2): 119-132, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33025358

RESUMO

Sepsis-associated encephalopathy is a serious consequence of sepsis, triggered by the host response against an infectious agent, that can lead to brain damage and cognitive impairment. Several mechanisms have been proposed in this bidirectional communication between the immune system and the brain after sepsis as neuroinflammation, oxidative stress, and mitochondrial dysfunction. Stanniocalcin-1 (STC-1), an endogen neuroprotective protein, acts as an anti-inflammatory and suppresses superoxide generation through induction of uncoupling proteins (UCPs) in the mitochondria. Here, we demonstrated a protective role of STC-1 on inflammatory responses in vitro, in activated microglia stimulated with LPS, and on neuroinflammation, oxidative stress, and mitochondrial function in the hippocampus of rats subjected to an animal model of sepsis by cecal ligation and puncture (CLP), as well the consequences on long-term memory. Recombinant human STC-1 (rhSTC1) suppressed the pro-inflammatory cytokine production in LPS-stimulated microglia without changing the UCP-2 expression. Besides, rhSTC1 injected into the cisterna magna decreased acute hippocampal inflammation and oxidative stress and increased the activity of complex I and II activity of mitochondrial respiratory chain and creatine kinase at 24 h after sepsis. rhSTC1 was effective in preventing long-term cognitive impairment after CLP. In conclusion, rhSTC1 confers significant neuroprotection by inhibiting the inflammatory response in microglia and protecting against sepsis-associated encephalopathy in rats.


Assuntos
Encefalite/prevenção & controle , Glicoproteínas/administração & dosagem , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/administração & dosagem , Encefalopatia Associada a Sepse/prevenção & controle , Animais , Células Cultivadas , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar
20.
Mol Neurobiol ; 57(12): 5247-5262, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32870491

RESUMO

Sepsis survivors present acute and long-term cognitive impairment and the pathophysiology of neurological dysfunction in sepsis involves microglial activation. Recently, the involvement of cytosolic receptors capable of forming protein complexes called inflammasomes have been demonstrated to perpetuate neuroinflammation. Thus, we investigated the involvement of the NLRP3 inflammasome activation on early and late brain changes in experimental sepsis. Two-month-old male Wistar rats were submitted to the sepsis model by cecal ligation and perforation (CLP group) or laparotomy only (sham group). Immediately after surgery, the animals received saline or NLRP3 inflammasome formation inhibitor (MCC950, 140 ng/kg) intracerebroventricularly. Prefrontal cortex and hippocampus were isolated for cytokine analysis, microglial and astrocyte activation, oxidative stress measurements, nitric oxide formation, and mitochondrial respiratory chain activity at 24 h after CLP. A subset of animals was followed for 10 days for survival assessment, and then behavioral tests were performed. The administration of MCC950 restored the elevation of IL-1ß, TNF-α, IL-6, and IL-10 cytokine levels in the hippocampus. NLRP3 receptor levels increased in the prefrontal cortex and hippocampus at 24 h after sepsis, associated with microglial, but not astrocyte, activation. MCC950 reduced oxidative damage to lipids and proteins as well as preserved the activity of the enzyme SOD in the hippocampus. Mitochondrial respiratory chain activity presented variations in both structures studied. MCC950 reduced microglial activation, decreased acute neurochemical and behavioral alteration, and increased survival after experimental sepsis.


Assuntos
Encéfalo/patologia , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/complicações , Doença Aguda , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Catalase/metabolismo , Citocinas/metabolismo , Transporte de Elétrons , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/metabolismo , Mediadores da Inflamação/metabolismo , Estimativa de Kaplan-Meier , Peroxidação de Lipídeos , Masculino , Memória , Transtornos da Memória/fisiopatologia , Microglia/metabolismo , Mitocôndrias/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Oxidativo , Córtex Pré-Frontal/metabolismo , Carbonilação Proteica , Ratos Wistar , Superóxido Dismutase/metabolismo , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...